最近几年,诸如大数据、云计算、区块链、人工智能……之类的IT新潮词汇总是隔三差五地刷屏网络。这些看起来晦涩难懂的IT术语背后代表的是什么?又有什么关联呢?今天科妹就带大家对比看看数据仓局、大数据和云计算三者的区别和联系。
1.数据仓库:
数据仓库,是为企业所有级别的决策制定过程,提供所有类型数据支持的战略集合。它是单个数据存储,出于分析性报告和决策支持目的而创建。为需要业务智能的企业,提供指导业务流程改进、监视时间、成本、质量以及控制。数据仓库是决策支持系统(dss)和联机分析应用数据源的结构化数据环境。数据仓库研究和解决从数据库中获取信息的问题。数据仓库的特征在于面向主题、集成性、稳定性和时变性。
2.大数据:
大数据(bigdata),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
3.云计算:
云计算(cloudcomputing)是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云是网络、互联网的一种比喻说法。过去在图中往往用云来表示电信网,后来也用来表示互联网和底层基础设施的抽象。因此,云计算甚至可以让你体验每秒10万亿次的运算能力,拥有这么强大的计算能力可以模拟核爆炸、预测气候变化和市场发展趋势。用户通过电脑、笔记本、手机等方式接入数据中心,按自己的需求进行运算。
1、数据库和数据仓库都是数据的一种存储方式,大数据处理更多的是一种需求(问题),而云计算是一种比较综合的需求(问题)解决方案。
2、由于云计算本身的特性,天生就面临大数据处理(存储、计算等)问题,因为云计算的基本架构模式是C/S模式,其中S相对集中,而C是广泛分布。所有用户的数据和绝大部分的计算都是在S端完成的(数据量大,计算量大),加上用户也天然具有多样性(地域,文化,需求,个性化等),因此需求(也包括计算量)就非常大。
3、云计算当然会涉及到数据的存储技术,但数据库技术对于云计算来说要视具体的情况来分析:
A)对于IaaS而言,数据库技术不是必需的,也不是必备的功能;
B)对于PaaS来说,数据库功能应该是必备的功能
C)对于SaaS而言,必然会用到数据库技术(包括传统关系数据库和NoSQL数据库)。
而对于数据仓库技术,并不是云计算所必需的,但由于云数据的信息价值极大,类似一座金矿,我想云服务商是不可能放过从这些金矿中提取金子的。
4、大数据首先所面临的问题就是大数据的存储问题,一般都会综合运用各种存储技术(文件存储,数据库存储),当然,你完全用文件存储或者数据库存储来解决,也是没问题的。与云计算类似,数据仓库技术不是必需的,但对于数据仓库技术对于结构化数据进行淘金还是非常有用的,当然,你不用数据仓库技术也可以,比如Hadoop模式。在云计算和大数据处理中,最基础的技术其实是分布式计算技术。而对于构建分布式计算而言,多线程,同步,远程调用(RPC,RMI等),进程管理与通信是其基本技术点。分布式计算编程是一种综合性应用编程,不仅需要有基本的技术点,还需要一定的组织管理知识。
大数据、数据仓库和云计算的关联和区别你已经理解了多少了呢?更多的大数据相关资讯关注微信公众号成都科多大数据就能获取哦。
主办单位:中国电力发展促进会 网站运营:北京中电创智科技有限公司 国网信通亿力科技有限责任公司 销售热线:400-007-1585
项目合作:400-007-1585 投稿:63413737 传真:010-58689040 投稿邮箱:yaoguisheng@chinapower.com.cn
《 中华人民共和国电信与信息服务业务经营许可证 》编号:京ICP证140522号 京ICP备14013100号 京公安备11010602010147号
最近几年,诸如大数据、云计算、区块链、人工智能……之类的IT新潮词汇总是隔三差五地刷屏网络。这些看起来晦涩难懂的IT术语背后代表的是什么?又有什么关联呢?今天科妹就带大家对比看看数据仓局、大数据和云计算三者的区别和联系。
1.数据仓库:
数据仓库,是为企业所有级别的决策制定过程,提供所有类型数据支持的战略集合。它是单个数据存储,出于分析性报告和决策支持目的而创建。为需要业务智能的企业,提供指导业务流程改进、监视时间、成本、质量以及控制。数据仓库是决策支持系统(dss)和联机分析应用数据源的结构化数据环境。数据仓库研究和解决从数据库中获取信息的问题。数据仓库的特征在于面向主题、集成性、稳定性和时变性。
2.大数据:
大数据(bigdata),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
3.云计算:
云计算(cloudcomputing)是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云是网络、互联网的一种比喻说法。过去在图中往往用云来表示电信网,后来也用来表示互联网和底层基础设施的抽象。因此,云计算甚至可以让你体验每秒10万亿次的运算能力,拥有这么强大的计算能力可以模拟核爆炸、预测气候变化和市场发展趋势。用户通过电脑、笔记本、手机等方式接入数据中心,按自己的需求进行运算。
1、数据库和数据仓库都是数据的一种存储方式,大数据处理更多的是一种需求(问题),而云计算是一种比较综合的需求(问题)解决方案。
2、由于云计算本身的特性,天生就面临大数据处理(存储、计算等)问题,因为云计算的基本架构模式是C/S模式,其中S相对集中,而C是广泛分布。所有用户的数据和绝大部分的计算都是在S端完成的(数据量大,计算量大),加上用户也天然具有多样性(地域,文化,需求,个性化等),因此需求(也包括计算量)就非常大。
3、云计算当然会涉及到数据的存储技术,但数据库技术对于云计算来说要视具体的情况来分析:
A)对于IaaS而言,数据库技术不是必需的,也不是必备的功能;
B)对于PaaS来说,数据库功能应该是必备的功能
C)对于SaaS而言,必然会用到数据库技术(包括传统关系数据库和NoSQL数据库)。
而对于数据仓库技术,并不是云计算所必需的,但由于云数据的信息价值极大,类似一座金矿,我想云服务商是不可能放过从这些金矿中提取金子的。
4、大数据首先所面临的问题就是大数据的存储问题,一般都会综合运用各种存储技术(文件存储,数据库存储),当然,你完全用文件存储或者数据库存储来解决,也是没问题的。与云计算类似,数据仓库技术不是必需的,但对于数据仓库技术对于结构化数据进行淘金还是非常有用的,当然,你不用数据仓库技术也可以,比如Hadoop模式。在云计算和大数据处理中,最基础的技术其实是分布式计算技术。而对于构建分布式计算而言,多线程,同步,远程调用(RPC,RMI等),进程管理与通信是其基本技术点。分布式计算编程是一种综合性应用编程,不仅需要有基本的技术点,还需要一定的组织管理知识。
大数据、数据仓库和云计算的关联和区别你已经理解了多少了呢?更多的大数据相关资讯关注微信公众号成都科多大数据就能获取哦。